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Abstract

One of the reasons why investors were not prepared for heavy losses in the stock 
markets that occurred after the beginning of sub-prime mortgage crisis in the US 
lies in the curious fact that many practitioners were led to believe that there are so 
many independent agents participating in the stock markets that surely they must 
act according to Central limit theorem i.e. according to Gaussian distribution. As 
it turns out the paradigm of normality has let us down once again and reputation 
of VaR based risk measurement is seriously damaged. An alternative measure that 
looks very strong at these dire times and quantifi es the losses that might be en-
countered in the tail is the conditional VaR (CVaR). While VaR represents a loss 
one expects at a determined confi dence level for a given holding period, CVaR is 
the loss one expects, provided that the loss is equal to or greater than VaR. In this 
paper the testing of CVaR models is performed on stock indexes from Slovenia, 
Croatia, Bosnia and Herzegovina, Serbia, Montenegro and Macedonia. Error sta-
tistics show that CVaR models are quite successful at capturing extreme losses that 
occurred in these markets, especially models based on Generalized extreme value 
distribution and a proposed Hybrid historical simulation CVaR model.
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1. Introduction

With the latest market crash in stock exchanges all around the world stemming from 
US sub-prime mortgage crises and spilling over to local stock markets it is beginning 
to become clear to everyone that there is a need for a risk management approach 
that comes to terms with the problems posed by extreme events. Risk measurement 
models, especially Value at risk (VaR) models that are used today in the world have 
clearly failed their purpose and the harsh reality caught most of the investors asleep 
and unprepared for such events. The surprise and disbelief was that much greater since 
almost all of the markets have enjoyed a prolonged period of constant growth and at 
fi rst glance there was nothing in VaR forecasts that would warn the investors about such 
huge losses. One of the reasons why most of the investors were not prepared for such 
events defi nitely lies in the curious fact that many practitioners were led to believe that 
stock markets behave rationally and have so many independent agents participating 
in them that surely they must act according to Central limit theorem i.e. according 
to Gaussian distribution. This unrealistic, but seductive claim was heavily endorsed 
by JP Morgan’s RiskMetrics VaR model which became almost a standard in the risk 
management industry. As it turns out the paradigm of normality has let us down once 
again and reputation of VaR models is seriously damaged. Artzner et al. (1997, 1999) 
used an axiomatic approach to the problem of defi ning a satisfactory risk measure. They 
defi ned attributes that any good risk measure should satisfy. They called risk measures 
that satisfy these axioms “coherent”. It turned out that VaR is not a coherent risk measure 
because it does not necessarily satisfy the sub-additivity condition set out by Artzner 
et al. (1999). VaR can only be made sub-additive if a usually implausible assumption 
is imposed of returns being normally (or more generally, elliptically) distributed. Even 
though VaR’s theoretical fl aws outweigh its practical advantages, VaR has become a 
regulatory obligation banks have to calculate in order to construct adequate capital 
requirements. A very serious shortcoming of VaR is that it provides no handle on the 
extent of the losses that might be suffered beyond a certain threshold confi dence level. 
VaR is incapable of distinguishing between situations where losses in the tail are only 
a bit worse, and those where they are overwhelming. It provides the lowest bound for 
losses in the tail of the loss distribution and has a bias toward optimism instead of the 
conservatism that ought to prevail in risk management. An alternative measure that 
does quantify the losses that might be encountered in the tail is the conditional VaR 
(CVaR). While VaR represents a loss one expects at a determined confi dence level for 
a given holding period, CVaR is the loss one expects to suffer, provided that the loss 
is equal to or greater than VaR. CVaR is a coherent measure of risk in the sense of 
Artzner et al. (1997, 1999), while VaR is not a coherent risk measure because it does 
not fulfi ll the axiom of subadditivity. This property expresses the fact that a portfolio 
made of subportfolios will risk an amount which is at most the sum of the separate 
amounts risked by its subportfolios. However, CVaR also has its' own fl aws and at 
present it is still not required by the regulators as a risk measure that can be used to 
calculate economic capital. The fi eld of CVaR estimation and model comparison is just 
beginning to develop and there is an obvious lack of empirical research. After all, these 
two risk measures are inherently connected in the sense that from the VaR surface of 
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the tail CVaR fi gures can easily be calculated. We are only beginning to investigate this 
new and exciting area in risk management science. Advances that have been made in 
VaR should not be lost with the probable (and well deserved) adoption of coherent risk 
measures into regulatory framework. Superior quality of VaR calculation techniques 
should yield superior CVaR forecasts. CVaR estimations can be signifi cantly improved 
by using the knowledge obtained from advances in VaR estimation. 

Since CVaR is a relatively new risk measure there are very few papers dealing with 
empirical testing of CVaR models. The goal of this paper is to extend the advances that 
have been made in VaR measurement techniques to CVaR estimation. Contributions 
of this paper are the following: An empirical investigation into relatively uncharted 
waters of tail risk assessment based on stock indexes from Slovenia, Croatia, Bosnia 
and Herzegovina, Serbia, Montenegro and Macedonia. A new semi-parametric 
approach to estimating CVaR is developed, called Hybrid historical simulation 
CVaR which is based on bootstrapping from a series of volatility updated tail losses. 
The goal of the paper is to fi nd a CVaR model that gives the best approximation to 
tail losses i.e. minimizes the deviation of CVaR forecasts from actual extreme losses. 
The rest of the paper is organized as follows: In section 2 a review of the literature 
on CVaR estimation and model comparison is presented. Section 3 introduces the 
concept of coherent risk measures, extreme value theory and a measure of average 
expected loss in the tail (CVaR). The consequences of coherence are discussed and 
strong points of CVaR are presented. Section 3 also presents a new approach to 
measuring CVaR. Section 4 outlines the methodology used in the testing of CVaR 
models. Findings and backtesting results are also presented in this section. Section 
5 concludes.

2. Literature review

Although VaR is useful for fi nancial institutions to see the glimpse of the risks they 
face, an ever growing number of research papers clearly show that VaR is not an 
adequate risk measure. As a result, more general convex measures of risk have been 
proposed. Among them, Conditional VaR (CVaR) became the most popular alternative 
to VaR. Unlike the literature about VaR model comparison which is extensive, studies 
that compare CVaR model performance is extremely rare, especially papers dealing 
with empirical comparison. Artzner et al. (1999) showed that VaR is not necessarily 
sub-additive, i.e., the VaR of a portfolio may be greater than the sum of individual 
VaRs and therefore, managing risk by using it may fail to automatically stimulate 
diversifi cation. Moreover, it does not indicate the size of the potential loss, given 
that this loss exceeds the VaR. To remedy these shortcomings, Artzner et al. (1997) 
introduced the Expected Shortfall risk measure, which equals the expected value of 
the loss, given that a VaR violation occurred. Basak, Shapiro (2001) suggested an 
alternative risk management procedure, namely limited expected losses based risk 
management (LEL-RM), that focuses on the expected loss also when (and if) losses 
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occur. They substantiated that the proposed procedure generates losses lower than 
what VaR based risk management techniques generate. CVaR turned out to be the 
most attractive coherent risk measure and has been studied by a number of authors 
(see Acerbi et al. 2001 and Inui, Kijima, 2005). Gilli, Kellezi (2003) advocate the use 
of Extreme value theory in tail risk estimation due to its fi rm theoretical grounds to 
compute both VaR and CVaR estimation. Yamai and Yoshiba (2005a, b) compared the 
two measures—VaR and CVaR —and argued that VaR is not reliable during market 
turmoil as it can mislead rational investors, whereas CVaR can be a better choice 
overall. However, they pointed out that gains on effi cient management by using the 
CVaR measure are substantial whenever its estimation is accurate. In other cases, 
they advise the market practitioners to combine the two measures for best results. 
Kondor, Varga-Haszonits (2008) fi nd that whenever there is an asset in a portfolio 
that dominates over others in a given sample the portfolio cannot be optimized under 
any coherent measure on that sample, including CVaR, which leads to unbounded 
positions, meaning that both VaR and CVaR can sometimes face similar problems. 
Harmantzis, Miao, Chien (2006) test several VaR and CVaR models on S&P500, 
DAX, CAC, Nikkei, TSE, and FTSE indexes, as well as several currencies (USD 
vs. EUR, JPY, GBP and CAD). They fi nd that for CVaR estimation, the historical 
method and extreme value based POT method give more correct estimations. In 
their study Gaussian models underestimates CVaR, while models based on Stable 
Paretian distribution overestimates CVaR. Angelidis, Degiannakis (2007) test the 
performance of various VaR and CVaR model on S&P500 index, Gold Bullion $ 
per Troy Ounce and US dollar/British pound exchange rate. In their paper they 
actually tested the impact of different volatility forecasting models within a strictly 
parametric framework so their results are not comparable with the results of this 
study. They fi nd that different volatility models are “optimal” for different assets. 
One can conclude that although CVaR is a superior risk measure it lacks the depth of 
the theoretical and empirical research that VaR measure is not lacking. Investigation 
into the theoretical properties of CVaR is still in its early stages, and empirical 
investigation is only beginning. This paper tries to fi ll the gap that exists in CVaR 
empirical literature. Furthermore, it analyses the performance of different CVaR 
models on a rarely analyzed markets in general, that is Slovenia, Croatia, Bosnia and 
Herzegovina, Serbia, Montenegro and Macedonia. 

3. CVaR and coherence

Recently, VaR as a risk measure is open to criticism from many directions. Hoppe 
(1999) argues that the underlying statistical assumptions are violated because they 
can not capture many features of the fi nancial markets such as intelligent agents. 
Artzner et al. (1997, 1999) have used an axiomatic approach to the problem of 
defi ning a satisfactory risk measure. They defi ned attributes that a good risk measure 
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should satisfy, and call risk measures that satisfy these axioms “coherent”. A coherent 
risk measure ρ assigns to each loss X a risk measure ρ(X) such that the following 
conditions are satisfi ed (Artzner et al. 1999):

ρ(tX) = tρ(X) (homogeneity) (1)
ρ(X) ≥ ρ(Y), if X ≤ Y (monotonicity) (2)
ρ(X + n) = ρ(X) - n (risk-free condition) (3)
ρ(X) + ρ(Y) ≤ ρ(X + Y) (sub-additivity) (4)

for any number n and positive number t. These conditions guarantee that the risk 
function is convex, which in turn corresponds to risk aversion. That is:

ρ(tX + (1 - t)Y) ≤ tρ(X) + (1 - t)ρ(Y) (5)

VaR is not a coherent risk measure because it does not necessarily satisfy the sub-
additivity condition. VaR can only be made sub-additive if a usually implausible 
assumption is imposed of returns being normally (or slightly more generally, 
elliptically) distributed (Artzner et al. 1999). Subadditivity expresses the fact that a 
portfolio made of subportfolios will risk an amount which is at most the sum of the 
separate amounts risked by its subportfolios. This is maybe the most characterizing 
feature of a coherent risk measure, something which belongs to everybody's concept 
of risk. The global risk of a portfolio will be the sum of the risks of its parts only 
in the case when the latter can be triggered by concurrent events, namely if the 
sources of these risks may conspire to act altogether. In all other cases, the global 
risk of the portfolio will be strictly less than the sum of its partial risks thanks to 
risk diversifi cation. This axiom captures the essence of how a good risk measure 
should behave under the composition/addition of portfolios. It is the key test for 
checking whether a measurement of a portfolio's risk is consistent with those of its 
subportfolios. For a sub-additive measure, which CVaR is, portfolio diversifi cation 
always leads to risk reduction, while for measures which violate this axiom, such 
as VaR, diversifi cation may produce an increase in their value even when partial 
risks are triggered by mutually exclusive events. Sub-additivity is not some trivial 
academic invention but a crucial part of any risk measure for a number of reasons:

• If risks are sub-additive, then adding risks together would give an overestimate 
of combined risk, and this means that a sum of risks can be used as a conservative 
estimate of combined risk. This facilitates decentralized decision-making within 
a fi rm, because a supervisor can always use the sum of the risks of the units 
reporting to him as a conservative risk measure. But if risks are not sub-additive, 
adding them together gives an un derestimate of combined risks, and this makes 
the sum of risks effectively useless as a risk measure. In risk management, it 
is desirable for risk estimates to be unbiased or if they are biased at least to be 
biased on the conservative side.
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• If regulators use non-sub-additive risk measures, like they do VaR, to set capital 
requirements, a bank might be tempted to break itself up to reduce its regulatory 
capital requirements, because the sum of the capital requirements of the smaller 
units would be less than the capital requirement of the bank as a whole.

• Non-sub-additive risk measures can also inspire traders to break up their 
accounts, with separate accounts for separate risks, in order to reduce their 
margin requirements. This could be a matter of serious concern for the exchange 
because the margin requirements on the separate accounts would no longer 
cover the combined risks.

A very serious shortcoming of VaR is that it provides no handle on the extent of 
the losses that might be suffered beyond the threshold amount indicated by it. VaR 
is incapable of distinguishing between situations where losses in the tail are only a 
bit worse, and those where they are overwhelming. Indeed, VaR merely provides 
a lowest bound for losses in the tail of the loss distribution and has a bias toward 
optimism instead of the conservatism that ought to prevail in risk management. An 
alternative measure that does quantify the losses that might be encountered in the 
tail is the Conditional VaR (CVaR). Both VaR and CVaR require the user to a priori 
specify confi dence level and holding period. While VaR represents a maximum loss 
one expects at a determined confi dence level for a given holding period, CVaR is the 
loss one expects to suffer, provided that the loss is equal to or greater than VaR, that 
is (see Yamai, Y., Yoshiba, T., 2002a):

“CVaR is the expected value of the loss of the portfolio in the 100(1-cl)% worst cases 
during a holding period.”

Figure 1: VaR and CVaR

Source: Adapted from: Yamai, Yoshiba, 2002a

CVaR
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Unconditional CVaR is defi ned as:

 
 

(6)

and the conditional CVaR is given by:

 
 

(7)

CVaR is very appealing as a risk measure in that it sums all values of x, weighted 
by f(x), from minus infi nity to VaR, thus taking into account of the sizes of losses 
beyond the VaR level. CVaR can be encountered in the academic literature under 
many names such as: Expected shortfall (ES), Expected tail loss (ETL), tail VaR, 
tail conditional expectation, mean excess loss, beyond VaR etc. CVaR measure has 
been used by insurance practitioners, especially casualty insurers for a long time as 
conditional average claim size. Reinsures are also familiar with conditional coverage 
of losses in excess of a threshold. For continuous loss distributions, CVaR at a given 
confi dence level is the expected loss given that the loss is greater than the VaR at 
that level, or for that matter, the expected loss given that the loss is greater than or 
equal to the VaR. For distributions with possible discontinuities, however, it has 
a more subtle defi nition and can differ from either of those quantities, which for 
convenience in comparison can be designated by CVaR+ and CVaR-, respectively. 
CVaR+ is also known as “mean shortfall”, although the seemingly identical term 
“expected shortfall” has been interpreted in other ways in Acerbi, Nordio, Sirtori 
(2001), with the latter paper taking it as a synonym for CVaR itself), while “tail VaR” 
is a term that has been suggested for CVaR- (Artzner et al. 1999). Unlike CVaR+ 
and CVaR-, CVaR is a coherent measure of risk in the sense of Artzner et al. (1999). 
However, CVaR is no panacea and has its own fl aws; Yamai and Yoshiba (2002b) 
fi nd that both VaR and CVaR are not reliable during market turmoil and can give 
misleading results, although CVaR is a better choice than VaR. 

With the dawn of a new “coherent” risk measure there exists a need for a new risk 
management paradigm. Risk management is primarily concerned with the risk of 
low-probability events that could result in catastrophic losses. Traditional VaR 
models tend to ignore extreme events and focus on modeling the entire empirical 
distribution of returns. By wrongly using the Central limit theorem it is often assumed 
that returns are normally or lognormally distributed, but little attention is paid to the 
distribution of the tails. The danger is that such risk models are prone to fail just 
when they are needed the most – in large market moves, when large losses occur. 
Estimation of the risks associated with rare events with limited data is inevitably 
problematic, and these diffi culties increase as the events concerned become rarer. 
Inference about the extreme tails is always uncertain, because of low number of 
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observations and sensitivity to the values of individual extreme observations. The 
key to estimating the distribution of extreme events is the extreme value theorem, 
which governs the distribution of extreme values, and shows how this distribution 
looks like in the limit, as the sample size increases. 

The application of extreme value theory (EVT) to risk management was just the thing 
that the new “coherent” risk measure was missing to establish itself as a pretender to 
the throne currently held by “non-coherent” VaR. Estimation of the risks associated 
with rare events with limited data is inevitably problematic, and these diffi culties 
increase as the events concerned become rarer. Inference about the extreme tail 
is always uncertain, because of low number of observations and sensitivity to the 
values of individual extreme observations. EVT models were primarily used in 
the fi eld of civil engineering: engineers are required to design their structures to 
withstand the forces that might be reasonable to expect but are rarely experienced. 
Another standard fi eld of application of EVT is hydrology, where engineers have 
long struggled with the question of how high dams, sea-walls and dikes should be 
to contain the probabilities of fl oods within reasonable limits. They have to do their 
calculations with even fewer observations than fi nancial risk practitioners, and their 
quantile estimates are typically well out of the range of their sample data. EVT 
provides a framework in which an estimate of anticipated forces could be made using 
historical data. By defi nition, extreme events are rare, meaning that their estimates 
are often required for levels of a process that are greater that those in the available 
data set. This implies an extrapolation from observed levels to unobserved levels 
and extreme value theory provides a class of models to enable such extrapolation. 
In lieu of an empirical basis, asymptotic argument is used to generate EV models. 
Today EVT is used in traffi c predictions in the telecommunications, alloy strength 
predictions, ocean wave modeling, thermodynamics of earthquakes, memory cell 
failure and many other fi elds. It is important to be aware of the limitations implied 
by the adoption of the extreme value paradigm. EV models are developed using 
asymptotic arguments, which should be kept in mind when applying them to fi nite 
samples. EV models are derived under idealized circumstances, which need not be 
true for a process being modeled.

Presuming n observations of P&L time series, if X is IID drawn from some unknown 
distribution F(x) = P(X ≤ x), estimating extreme value (EV) VaR/CVaR posses a 
signifi cant problem because the distribution F(x) is unknown. Help comes from 
Fisher-Tippett theorem (1928), which shows that as n gets large the distribution of 
tail of X converges to the Generalized extreme value distribution (GEV):

 
 

(8)



Saša Žiković • Quantifying extreme risks in stock markets: A case of former... 
Zb. rad. Ekon. fak. Rij. • 2008 • vol. 26 • sv. 1 • 41-68  49

where x satisfi es the condition 1 + ξ(x-μ)/σ > 0. GEV distribution has three parameters: 
location parameter (μ), which is a measure of central tendency, scale parameter (σ), 
which is a measure of dispersion and tail index (ξ), which is a measure of the shape 
of the tail. GEV distribution has three special cases:

■ If ξ > 0, GEV distribution becomes a Fréchet distribution, meaning that F(x) is 
leptokurtotic. 

■ If ξ = 0, GEV distribution becomes a Gumbel distribution, meaning that F(x) has 
normal kurtosis.

■ If ξ < 0, GEV distribution becomes a Weibull distribution, meaning that F(x) is 
platokurtotic, which is usually not the case with fi nancial data.

Mean and variance are related to location and scale parameters of GEV distribution 
as follows (Dowd, 2002):

  
which converges to μ + 0,577216σ as ξ → 0  (9)

  
which converges to 2

2

6
σπ

 as ξ → 0 (10)

It is easy to obtain mean and variance from μ and σ, but one must be careful not to 
confuse the two since they differ signifi cantly. 

Quantiles of GEV distribution can be obtained by taking log of equation (8):

 
 (11)

Value of x is than calculated to get the quantiles or VaRs associated with a desired 
confi dence level. EV VaR is calculated as (Dowd, 2002): 

    
(Fréchet VaR, ξ > 0) (12)

  (Gumbel VaR, ξ = 0) (13)

There are no closed form CVaR formulas for Fréchet and Gumbel distributions but 
EV CVaR can be derived from EV VaR estimates using “average-tail VaR” algorithm 
set out in Dowd (2002). The fact that the CVaR is a probability weighted average 
of tail losses suggests that CVaR can be estimated as an average of tail VaRs. The 
approach suggested by Dowd (2002) to calculating CVaR is to divide the tail of the 
P&L distribution into a large number (n > 500) of equally distant slices, each of 
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which has the same probability mass and then calculate the VaR for each slice. The 
mean of calculated tail VaRs gives CVaR. It is easily shown that CVaR is indeed 
estimable in a consistent way as the “average of 100cl% worst cases:

    
where Xi:n are order statistics (14)

 
 (15)

To estimate EV risk measures it is necessary to estimate EV parameters – μ, σ, and 
in the case of Fréchet distribution the tail index (ξ). The fi rst two parameters μ and σ 
can be easily found using standard methods to obtain mean and standard deviation, 
and than transforming those through equations (12) and (13). Estimation of tail index 
is a bit more demanding. Embrechts et al. (1997) suggests determining the tail index 
of the distribution via Hill estimator:

 
 (16)

where k, the tail threshold used in the Hill estimation has to be chosen arbitrarily, 
which is a major source of problems in practice. The Hill estimator is the average of 
the k most extreme observations, minus (k+1)th observation, which is next to the tail. 
There are two approaches to handling the trade off between bias and variance. The 
fi rst approach, recommended by Embrechts et al. (1997), is based on estimating the 
Hill estimator for a range of k values and selecting the k values where the plot of the 
Hill estimator against k fl attens out. Danielson, de Vries (1997) suggest fi nding an 
optimal value of k that minimizes MSE loss function and, in regards to MSE, refl ects 
an optimal trade off between bias and variance. Their procedure takes a second-order 
approximation to the tail of the distribution and uses the fact that k is optimal (in 
the MSE sense) at the point where bias and variance reduce at the same rate. They 
suggest using a sub-sample bootstrapping procedure for fi nding the optimal value of 
k. Unfortunately, this approach, although brilliant, is impractical since it requires a 
very large sample size which is very diffi cult to obtain in practice. For this reason in 
this paper the approach recommended by Embrechts is adopted.

When forecasting CVaR, researchers mostly use either simple moving average 
models with GEV distribution or plain equally weighted historical models. I propose 
bootstrapping transformed tail losses, because it is shown that a similar approach 
when used for VaR estimation on volatile markets yields signifi cant improvements 
over parametric and nonparametric approaches (see Žiković, 2007). CVaR models 
that are analyzed in this paper are: simple moving average volatility model (SMA) 
with Fréchet distribution, simple moving average volatility model (SMA) with 
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Gumbel distribution, bootstrapped historical simulation with 500 days observation 
period, GARCH volatility model with Fréchet distribution, GARCH volatility model 
with Gumbel distribution and bootstrapped HHS CVaR model.

CVaR for simple moving average volatility model (SMA) with Fréchet and Gumbel 
distribution and GARCH volatility model with Fréchet and Gumbel distribution, 
due to the lack of closed form solutions, are derived from their respective EV VaR 
estimates using “average-tail VaR” algorithm.

Historical simulation CVaR can be expressed as:

 
 (17)

where Xn(1) ≤ Xn(2) ≤ ...≤ Xn(n) are order statistics.

Parametric CVaR forecasts, even those based on GEV distribution should be very 
sensitive to the misspecifi cation of the functional form of the losses and parameter 
estimates, especially tail index. Furthermore these models can not adequately or 
timely adapt to sudden changes in levels of volatility. Purely nonparametric CVaR 
estimation approaches, such as calculating CVaR from the untransformed historical 
data set of tail losses, are certain to be unreactive to sudden shifts in market regimes 
and occurrence of extreme events. This is exactly the same critique that applies to 
this approach when using them for VaR calculation. The logic shows that the weak 
points of risk measurement models cannot be ignored and they continually come back 
to haunt us even when we switch from one risk measure to another. The problems 
remain the same regardless whether we are estimating VaR or CVaR. 

Hybrid historical simulation (HHS) model that was developed in Žiković (2007) and 
yielded excellent results for stock indexes from 12 EU new member states can be 
used as a basis for developing a semi-parametric approach to estimation of CVaR. I 
propose a Bootstrapped HHS CVaR model that starts by standardizing the tail losses 
in excess of HHS VaR by the latest GARCH volatility update for that point in time 
to form a series of standardized tail losses:

 
 (18)

Since these standardized tail losses are now IID they are suitable for bootstrapping. 
Using bootstrapping new discrete PDFs of tail losses are derived which are than 
updated by the latest GARCH volatility forecasts:

  (19)
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By taking the averages over a great number of volatility updated tail PDFs (óF(n)(t)) 
CVaR forecasts are obtained. Besides being reactive to the latest market developments 
through the use of GARCH volatility updating the HHS CVaR approach also 
provides for an elegant way of calculating confi dence intervals for CVaR estimates, 
based on bootstrapping that is free of any distributional assumptions. The only 
assumption that is made in the model is that the underlying data generating process 
can be described by a GARCH process. HHS CVaR model does not impose any 
distributional assumptions about the behavior of the tail losses, unlike EV CVaR 
models, and allows for the empirical distribution of tails to evolve over time.

Hybrid historical simulation (HHS) CVaR can be expressed as:

 
 (20)

where )()1()1(
ˆˆˆ

nnnn ZZZ ≤≤≤ K are order statistics from volatility scaled bootstrapped 

series Ẑ .

The strong points and weaknesses of every model remain with them and that is 
way knowledge obtained in developing VaR models must not be wasted. Cutting-
edge VaR estimation techniques can easily be adopted to serve a new “superior” risk 
measure – CVaR. Research in VaR estimation should by no means be discouraged, 
but instead intensifi ed, because it could now serve a dual purpose – improving VaR 
estimates but also improving CVaR estimates. 

A more robust series of statistical tests can be used when evaluating CVaR then VaR. 
Since CVaR forecasts the expected extreme losses it allows us to employ the standard 
best-fi t statistics because the task is to measure the distance between realized and 
forecasted extreme losses. In order to statistically compare CVaR models, in the next 
section, each model will be graded by four symmetrical error statistics: the mean 
absolute error (MAE), two versions of the root mean squared error (RMSE), and the 
mean absolute percentage error (MAPE). 

 
 (21)

 
 (22)
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 (23)

 
 (24)

Out of these error statistics, MAPE can be viewed as the most global of these 
statistics since it measures the deviation between forecasted and realized values in 
relative terms. By measuring the deviations in this manner MAPE statistic is the most 
comparable measure between different CVaR models. Furthermore, MAPE unlike 
RMSE does not square the deviations and in that manner does not put the most 
weight on the outliers, but redistributes it equally across all of the observations.

4. Data and results

The data used in the analyses of CVaR models are the daily log returns from stock 
indexes of countries that formed former Yugoslavia (Slovenia – SBI20 index, 
Croatia – CROBEX index, Serbia – BELEX index, Bosnia and Herzegovina 
(Republic of Srpska) – BIRS index, Montenegro – NEX20, Macedonia – MBI10), 
with the exception of Sarajevo stock exchange index SASE for which data for longer 
periods is not publicly available. The returns are collected for the period 01.01.2000 
- 12.05.2008, which includes the latest market crisis in the global and regional 
markets. The calculated CVaR fi gures are for a one-day ahead horizon and a cut 
off level of 95 percent, i.e., the fi ve percent of returns that fall into lower tail of the 
return distribution are considered to be extreme returns. To secure the same out-of-
the-sample VaR backtesting period for all of the tested stock indexes, the out-of-the-
sample data sets are formed by taking out 500 of the latest observations from each 
stock index where it was possible (SBI20, CROBEX and NEX20). For the rest of the 
indexes (BELEX, BIRS and MBI10) that have a short history, latest 250 observations 
are used. The rest of the observations are used as presample observations needed for 
CVaR starting values, tail index estimation required for EV approaches and volatility 
model calibration. Length of the tail losses data set used for backtesting depends 
on the number of VaR errors generated by each VaR model. The quality of CVaR 
forecasts does not only depend on CVaR estimation model but also on the quality 
of the VaR forecast. This can be easily demonstrated by the simple fact that a loss 
that might be extreme under one VaR model and as such is compared to the CVaR 
forecast might not exceed some other, more conservative VaR model.

All of the analyzed indexes show a strong positive mean, which is signifi cantly different 
from zero, a fi nding that can be expected in emerging, fast growing stock markets. 
Distribution of returns is not symmetrical and shows signifi cant positive asymmetry 
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(except BIRS index). High excess kurtosis indicates the presence of extreme events 
that are unlikely to occur under the normality assumption. Consequently, all of the 
normality tests show that there is virtually no probability that the data generating 
processes behind these indexes are normally distributed. Ljung Box Q tests on 
mean adjusted returns and squared returns show that all analyzed stock indexes 
are characterized by signifi cant autoregression and heteroskedasticity. GARCH 
and EGARCH representation of volatility with Student’s T and GED distribution 
are used to capture the dynamics of data generating processes of analyzed indexes. 
The dynamics of the data generating processes are complex because changes in 
the effi ciency of the market alter the long-run level and persistence of volatility. 
Furthermore, there is ample of empirical evidence on a positive relationship between 
trading volume and volatility. Supposing that some predictability (signifi cant AR 
term) is present in the series, increasing effi ciency tends to lower the level and 
persistence of volatility, but larger volume might push its level up. Volatility can be 
raised due to other reasons too, for example when news in the return series arrive 
more often and are of larger magnitude than usual (shift in the volatility of error 
term). The increasing integration of the local stock markets into the global capital 
market may only further amplify this effect. The descriptive statistics for the analyzed 
indexes are presented in table 1.

Table 1: Descriptive statistics for SBI20, CROBEX, BELEX, BIRS, NEX20 and 
MBI10 index in the period from the offi cial beginning of the index until 
12.05.2008.

Source: Author’s calculations
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All of the characteristics that are found in the returns from the analyzed stock 
indexes indicate that classical VaR models could not forecast the true level of risk 
an investor would be faced with when investing in these markets. CVaR models in 
general, but especially those based on extreme value approach should adequately 
capture the risks since they a priori focus on the tail regions of the return distribution. 
Backtesting results for CVaR at 95% cut-off level are presented in tables 1-6 and 
fi gures 1-6 in the appendix. 

For SBI20 index at 95% cut-off level according to all of the employed error statistics 
the Bootstrapped HHS CVaR approach was the best performing CVaR measure 
resulting in smallest deviations from realized tail losses, and minimizing the loss 
function. The worst performer was the GARCH extreme value (EV) approach 
based on Fréchet distribution with tail index equal to 0.3, resulting in the highest 
deviations from realized tail losses. For CROBEX index according to RMSE(1), 
RMSE(2) and MAE statistic the simple moving average (SMA) EV approach based 
on Gumbel distribution was the best performing CVaR model. According to MAPE 
statistic the GARCH EV approach with Gumbel distribution was the best performing 
CVaR model. The worst performers were the GARCH and the SMA EV approaches 
based on Fréchet distribution with tail index equal to 0.32. For BELEX index 
according to all of the employed error statistics the SMA EV approach based on 
Gumbel distribution was the best performing CVaR model. The worst performer was 
the SMA EV approach based on Fréchet distribution with tail index equal to 0.22. 
For BIRS index according to all of the employed error statistics the bootstrapped 
historical simulation (HS) with 500 days’ window length was the best performing 
CVaR model. The worst performers were the GARCH and the SMA EV approaches 
based on Fréchet distribution with tail index equal to 0.275. For NEX20 index 
according to all of the employed error statistics the SMA EV approach based on 
Gumbel distribution was the best performing CVaR model. The worst performer 
was the SMA EV approach based on Fréchet distribution with tail index equal to 0.2, 
resulting in highest deviations from realized tail losses. For MBI10 index according 
to RMSE(1), RMSE(2) and MAE statistic the Bootstrapped HHS CVaR approach 
was the best performing CVaR model. According to MAPE statistic the SMA EV 
approach with Gumbel distribution was the best performing CVaR model. The worst 
performer was the GARCH EV approaches based on Fréchet distribution with tail 
index equal to 0.3.

As detailed in the previous section, due to its characteristics the MAPE statistic can 
be viewed as the most intuitive and reliable error statistic out of the selected ones. 
The ranking of tested CVaR models according to MAPE statistic is presented in table 
2.
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Table 2: Ranking of tested CVaR models according to MAPE statistic in the last 
500 (250) days up until 12.05.2008.

Source: Author’s calculations

Overall the SMA EV approach based on Gumbel distribution was the best performing 
CVaR measure being the best ranked CVaR model for three out of six indexes 
(BELEX, NEX20 and MBI10). The SMA EV (Gumbel) model is followed by 
GARCH EV approach that also uses Gumbel distribution, Bootstrapped HHS CVaR 
and Bootstrapped HS500 CVaR model. The worst performers for all of the tested 
indexes are SMA and GARCH EV approach based on Fréchet distribution. These 
CVaR models based on Fréchet distribution greatly overestimated the expected 
averages of extreme (tail) losses.

Comparing the performance results of virtually the same models that use Gumbel 
instead of Fréchet distribution provides a clearer picture into the anatomy of the 
estimation problem. Models that used Gumbel distribution performed far better 
compared to models using Fréchet distribution. Since the models are the same but 
differ only in the choice of the underlying distribution this points to two possible 
reasons for such over-predictions of Fréchet distribution based CVaR models: 

a)  Tail indexes have been incorrectly calculated (they are too high) and/or

b)  The use of GEV distributions with heavy tails in CVaR estimation provides 
excessively conservative estimates of average extreme (tail) losses.

Since estimation of tail index for CVaR models using Fréchet distribution was carried 
out across different time periods and the values remained virtually unchanged we 
can disregard the problem with estimation of tail indexes for now and conclude 
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that for the tested stock indexes the use of GEV distributions with heavy tails in 
CVaR estimation provides overly conservative estimates of average tail losses. The 
performance of Bootstrapped HHS model is satisfactory, giving consistent estimates, 
with minimal deviations from realized extreme events, and being second only to 
approaches using Gumbel distribution.

The backtesting performance of tested CVaR models shows obvious consistency, 
with models using Gumbel distribution being always among top two models, and 
models using Fréchet distribution being always the worst performing CVaR models. 
These fi nding are somewhat surprising since similar CVaR models are ranked as the 
best and the worst performers, but clearly point to the importance of choosing the 
right extreme value distribution to describe the tails of the data, as well as accurate 
tail index estimation when using extreme value approach. 

5. Conclusion

When forecasting CVaR measures researchers mostly use either simple moving 
average models with GEV distribution or plain equally weighted historical models. 
Parametric CVaR forecasts, even those based on GEV distribution should be very 
sensitive to the misspecifi cation of the functional form of the losses and parameter 
estimates, especially tail index. Purely nonparametric CVaR estimation approaches, 
such as calculating CVaR from the untransformed historical data set of tail losses are 
certain to be unreactive to sudden shifts in market regimes and occurrence of extreme 
events. This is exactly the same critique that applies to these approaches when using 
them for VaR calculation. A new CVaR estimation approach named Bootstrapped 
Hybrid historical simulation CVaR is presented in the paper. The model is based on 
bootstrapping volatility transformed tail losses. Similar model has been shown to 
yield signifi cant improvements over parametric and nonparametric approaches when 
used as a VaR model on volatile and illiquid markets. 

The analyzed stock indexes from Slovenia, Croatia, Bosnia and Herzegovina, Serbia, 
Montenegro and Macedonia signifi cantly differ in statistical characteristics from the 
developed markets. Distribution of returns on these indexes is not symmetrical and 
shows signifi cant positive asymmetry (except BIRS index). High excess kurtosis 
indicates the presence of extreme events that are unlikely to occur under the normality 
assumption. Furthermore, all of the analyzed stock indexes are characterized by 
signifi cant autoregression, which is not common in the developed stock markets. 
These statistical characteristics make CVaR estimation more challenging and require 
sophisticated treatment of mean and volatility data generating processes. 

The backtesting performance of tested CVaR models in the regional stock markets 
shows obvious consistency, with Gumbel distribution based CVaR models being 
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always among top two CVaR models, and Fréchet distribution based models being 
always the worst performing CVaR models. These fi ndings are somewhat surprising 
since similar CVaR models are ranked as the best and the worst performers, but 
clearly point to the importance of choosing the right extreme value distribution to 
describe the tails of the data, as well as accurate tail index estimation when using 
extreme value approach. It can be concluded that for the tested stock indexes the 
use of GEV distributions with heavy tails in CVaR estimation provides overly 
conservative estimates of average tail losses. The newly proposed Bootstrapped 
HHS model performed satisfactory, giving consistent estimates, with minimal 
deviations from realized extreme events, and being second only to approaches that 
use Gumbel distribution. The quality of CVaR forecasts does not only depend on 
CVaR estimation model but also on the quality of the VaR forecasts, since superior 
VaR models yield a smaller number of tail events, which in turn eases the CVaR 
estimation. Having this in mind the focus of future research should be on improving 
both VaR and CVaR estimation techniques as well as fi nding superior combinations 
of VaR/CVaR models, because information from such combination of risk measures 
can serve as a solid basis for decision making by investors.
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Kvantifi ciranje ekstremnih rizika na burzama: 
Analiza na primjeru država u sastavu bivše Jugoslavije1

Saša Žiković2

Sažetak

Jedan od razloga zbog kojeg su investitori bili nespremni na visoke gubitke na 
tržištima kapitala koji su se dogodili nakon početka hipotekarne krize u SAD-u 
zasigurno se nalazi u neobičnoj činjenici da su mnogi investitori bili uvjereni da se 
zbog velikog broja neovisnih agenata na tržištima kapitala, ona moraju ponašati 
prema teoremu centralnog limita tj. da su povrati na tržištima kapitala normalno 
distribuirani. Očito je da je paradigma normalnosti još jedanput iznevjerila, a 
ugled mjera rizika koje se temelje na VaR-u ozbiljno je uzdrman. Alternativna 
mjera rizika koja u ovim teškim vremenima puno obećaje i uspješno kvantifi cira 
ekstremne gubitke jest kondicionalni VaR (CVaR). VaR predstavlja gubitak koji se 
može ostvariti od određene investicije, u promatranom razdoblju, uz određenu 
vjerojatnost, dok je CVaR prosječni gubitak koji se može očekivati ukoliko je 
realizirani gubitak veći ili jednak predviđenom VaR-u. U ovom radu testiranje 
CVaR modela je provedeno na burzovnim indeksima Slovenije, Hrvatske, Bosne i 
Hercegovine, Srbije, Crne Gore i Makedonije. Provedeno testiranje pokazuje da su 
CVaR modeli uspješni u predviđanju ekstremnih gubitaka koji su se dogodili na 
analiziranim tržištima. Posebno uspješnim su se pokazali modeli temeljeni na 
generaliziranoj distribuciji ekstremnih vrijednosti te predloženi CVaR model 
temeljen na hibridnoj povijesnoj simulaciji.   

Ključne riječi: ekstremni gubitci, kondicionalni VaR, teorija ekstremnih vrijednosti, 
hibridna povijesna simulacija

JEL klasifi kacija: G24, C14, C22, C52, C53

1 Prikazani rezultati proizašli su iz znanstvenog projekta (Strategija ekonomsko-socijalnih odno-
sa hrvatskog društva, Br. 081-0000000-1264), provođenog uz potporu Ministarstva znanosti, 
obrazovanja i športa Republike Hrvatske.

2 Doktor ekonomskih znanosti, Sveučilište u Rijeci, Ekonomski fakultet, I. Filipovića 4, 51000 
Rijeka, Hrvatska. Znanstveni interes: Bankarstvo, upravljanje rizicima, kvantitativno modeli-
ranje. Tel: +385 51 355 139. E-mail: szikovic@efri.hr
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Appendices

Table 1: Backtesting results for CVaR forecasts (SBI20 index, ξ = 0.3, cl = 0.95, 
period 26.4.2006 - 12.5.2008)

Source: Author’s calculations

Table 2: Backtesting results for CVaR forecasts (CROBEX index, ξ = 0.32, 
cl = 0.95, period 11.5.2006 - 12.5.2008)

Source: Author’s calculations

Table 3: Backtesting results for CVaR forecasts (BELEX index, ξ = 0.22, cl = 0.95, 
period 15.5.2007 - 9.5.2008)

Source: Author’s calculations
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Table 4: Backtesting results for CVaR forecasts (BIRS index, ξ = 0.275, cl = 0.95, 
period 4.5.2007 - 12.5.2008)

Source: Author’s calculations

Table 5: Backtesting results for CVaR forecasts (NEX20 index, ξ = 0.2, cl = 0.95, 
period 25.4.2006 - 12.5.2008)

Source: Author’s calculations

Table 6: Backtesting results for CVaR forecasts (MBI10 index, ξ = 0.3, cl = 0.95, 
period 11.5.2007 - 12.5.2008)

Source: Author’s calculations
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Figure 1:  Tail losses and CVaR forecasts for SBI20 index in the period 26.4.2006 
- 12.5.2008 (cl = 0.95, ξ = 0.3)

Source: Author’s calculations
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Figure 2: Tail losses and CVaR forecasts for CROBEX index in the period 11.5.2006 
- 12.5.2008 (cl = 0.95, ξ = 0.32)

Source: Author’s calculations
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Figure 3: Tail losses and CVaR forecasts for BELEX index in the period 15.5.2007 
- 9.5.2008 (cl = 0.95, ξ = 0.22)

Source: Author’s calculations
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Figure 4:  Tail losses and CVaR forecasts for BIRS index in the period 4.5.2007 - 
12.5.2008 (cl = 0.95, ξ = 0.275)

Source: Author’s calculations
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Figure 5: Tail losses and CVaR forecasts for NEX20 index in the period 25.4.2006 
- 12.5.2008 (cl = 0.95, ξ = 0.2)

Source: Author’s calculations
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Figure 6: Tail losses and CVaR forecasts for MBI10 index in the period 11.5.2007 
- 12.5.2008 (cl = 0.95, ξ = 0.3)

Source: Author’s calculations


